博客
关于我
ElasticSearch倒排索引简析
阅读量:230 次
发布时间:2019-02-28

本文共 944 字,大约阅读时间需要 3 分钟。

内容概要

  • 倒排索引是什么?为什么需要倒排索引?
  • 倒排索引是怎么工作的?

1. 倒排索引是什么?

假设有一个交友网站,信息表如下:

美女1:“我要找在上海做 PHP 的哥哥。

需要匹配 性别、城市、语言列

美女2:“我要找北京的爱旅游、爱美食的 JAVA 哥哥。

更复杂了是吧,实际场景中,会有更复杂的排列组合。

对于这类的搜索,关系型数据库的索引就很难应付了,适合使用全文搜索的倒排索引。

倒排索引是一种数据库的索引形式,存储了 “内容 -> 文档” 映射关系,目的是快速的进行全文搜索。

2. 倒排索引是怎么工作的?

主要包括2个过程:

  • 创建倒排索引
  • 倒排索引搜索

2.1 创建倒排索引

举个例子,有2个文档:

  • Document#1

Recipe of pasta with sauce pesto

  • Document#2

Recipe of delicious carbonara pasta

先对文档进行分词,形成一个个的 token,也就是 单词,然后保存这些 token 与文档的对应关系。

结果如下:

2.2 倒排索引搜索

搜索示例:

  • 搜索 “pasta recipe

先分词,得到2个 token,( “pasta”、“recipe” )。

然后去倒排索引中进行匹配。

这2个词在2个文档中都匹配,所以2个文档都会返回,而且分数相同。

  • 搜索 “carbonara pasta

同样,2个文档都匹配,都会返回。

这次 document#2 的分数要比 document#1 高。

因为 #2 匹配了2个词(“carbonara”、“pasta”),#1 只匹配了一个(“pasta”)。

2.3 转换

有时我们可以在保存和搜索之前对 token 进行一些转换,最普遍的例如:

  • 扔掉停止词

停止词是那些使用量非常大,但又没有什么意义的词。

例如英文中的 “of”, “the”, “for” ……

  • 元素化

把单词处理为字典中的标准词,例如:

“running” => “run”

“walks” => “walk”

“thought” =>“think”

  • 词干分析

通过切断词尾将一个词转换成词根形式的过程。

不能处理不规则动词的情况,但可以处理字典中没有的词。

转载地址:http://xzhs.baihongyu.com/

你可能感兴趣的文章
MSBuild 教程(2)
查看>>
msbuild发布web应用程序
查看>>
MSB与LSB
查看>>
MSCRM调用外部JS文件
查看>>
MSCRM调用外部JS文件
查看>>
MSEdgeDriver (Chromium) 不适用于版本 >= 79.0.313 (Canary)
查看>>
MsEdgeTTS开源项目使用教程
查看>>
msf
查看>>
MSSQL数据库查询优化(一)
查看>>
MSSQL数据库迁移到Oracle(二)
查看>>
MSSQL日期格式转换函数(使用CONVERT)
查看>>
MSTP多生成树协议(第二课)
查看>>
MSTP是什么?有哪些专有名词?
查看>>
Mstsc 远程桌面链接 And 网络映射
查看>>
Myeclipse常用快捷键
查看>>
MyEclipse更改项目名web发布名字不改问题
查看>>
MyEclipse用(JDBC)连接SQL出现的问题~
查看>>
mt-datetime-picker type="date" 时间格式 bug
查看>>
myeclipse的新建severlet不见解决方法
查看>>
MyEclipse设置当前行背景颜色、选中单词前景色、背景色
查看>>